CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner
نویسندگان
چکیده
CD4(+)FoxP3(+) regulatory T (T reg) cells comprise a separate lineage of T cells that are essential for maintaining immunological tolerance to self. The molecular mechanism(s) by which T reg cells mediate their suppressive effects remains poorly understood. One molecule that has been extensively studied in T reg cell suppression is transforming growth factor (TGF)-beta, but its importance remains controversial. We found that TGF-beta complexed to latency-associated peptide (LAP) is expressed on the cell surface of activated but not resting T reg cells. T reg cell LAP-TGF-beta plays an important role in the suppression of the proliferation of activated T cells, but it is not required for the suppression of naive T cell activation. More importantly, T reg cell-derived TGF-beta could generate de novo CD4(+)FoxP3(+) T cells in vitro from naive precursors in a cell contact-dependent, antigen-presenting cell-independent and alpha(V) integrin-independent manner. The newly induced CD4(+)FoxP3(+) T cells are suppressive both in vitro and in vivo. Transfer of activated antigen-specific T reg cells with naive antigen-specific responder T cells to normal recipients, followed by immunization, also results in induction of FoxP3 expression in the responder cells. T reg cell-mediated generation of functional CD4(+)FoxP3(+) cells via this TGF-beta-dependent pathway may represent a major mechanism as to how T reg cells maintain tolerance and expand their suppressive abilities.
منابع مشابه
FOXP3 and TGF-β Gene Polymorphisms in Allergic Rhinitis
Background: Regulatory CD4+T (Treg) cells are effective in maintaining immune tolerance. Objective: To investigate single nucleotide polymorphisms (SNPs) of Transforming Growth Factor β-1 (TGF-β1) and Forkhead Box Protein 3 (FOXP3) genes in Iranian patients with allergic rhinitis (AR). Methods: Variations at codons 10 and 25 of TGF-β1 and FOXP3 at positions -3279 A>C and -924 A>G were evaluated...
متن کاملFoxp3 expression is required for the induction of therapeutic tissue tolerance.
CD4(+)Foxp3(+) regulatory T cells (Treg) are essential for immune homeostasis and maintenance of self-tolerance. They are produced in the thymus and also generated de novo in the periphery in a TGF-β-dependent manner. Foxp3(+) Treg are also required to achieve tolerance to transplanted tissues when induced by coreceptor or costimulation blockade. Using TCR-transgenic mice to avoid issues of aut...
متن کاملInduction of FOXP3 expression in naive human CD4 FOXP3 T cells by T-cell receptor stimulation is transforming growth factor- –dependent but does not confer a regulatory phenotype
Thymic-derived natural T-regulatory cells (nTregs) are important for the induction of self-tolerance and the control of autoimmunity. Murine CD4 CD25 Foxp3 cells can be induced to express Foxp3 after T-cell receptor (TCR) activation in the presence of transforming growth factor (TGF ) and are phenotypically similar to nTregs. Some studies have suggested that TCR stimulation of human CD4 CD25 ce...
متن کاملNumerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis
Objective(s): Regulatory T cells, including CD4+CD25+Fox3+ and CD8+CD28- cells play an important role in regulating the balance between immunity and tolerance. Since multiple sclerosis is an inflammatory autoimmune disease, regulatory T cells are considered to be involved in its pathogenesis. In this study, we investigated the circulatory numbers of the two mentioned types of regulatory T cells...
متن کاملTGF-β Signalling Is Required for CD4+ T Cell Homeostasis But Dispensable for Regulatory T Cell Function
TGF-β is widely held to be critical for the maintenance and function of regulatory T (T(reg)) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-β receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-β-driven peripheral tolerance is not regulated by TGF-β signalling on mature CD4⁺ T cells. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 205 شماره
صفحات -
تاریخ انتشار 2008